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ABSTRACT

A control volume method is proposed for planar div-curl systems. The method is inde-

pendent of potential and least squares formulations, and works directly with the div-curl

system. The novelty of the technique lies in its use of a single local vector field component

and two control volumes rather than the other way round. A discrete vector field theory

comes quite naturally from this idea and is developed in the paper. Error estimates are

proved for the method, and other ramifications investigated.
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1 Introduction. Although div-curl systems occur in fluid dynamics, in elec-

trodynamics and several other applications, relatively few discretizations are

available. A possible reason is that equivalent potential formulations often ex-

ist. Another reason is that the simple minded Galerkin finite element approach

is not convergent in general. A least squares formulation is the usual way to

get a convergent finite element scheme for planar problems. The situation in
three dimensions is worse. For example, the vector potential approach can have

spurious mode problems [10]. Underlying the difficulties is the latent overdeter-

mination of the div-curl system (4 equations, 3 unknown functions).

This article contains an alternative approach which works directly with the div-

curl equations and does not involve potentials or least squares. The new recipe

is finite volume based, but differs in a key ingredient. The change permits

the development of a discrete vector analysis. In turn, this provides tools for

analysis of the discretization and for other purposes.

Central to the approach is the use of dual pairs of meshes made up of "comple-

mentary volumes". In three dimensions, they have the property that the edges

of each mesh are perpendicular to the faces of the other. There are many possi-

bilities for such mesh pairs. In two dimensions, the simplest example consists of

the staggered Cartesian meshes (MAC meshes) well known in fluid rnechan[cs.
The complementary volumes are the basic mesh squares and the shifted mesh

squares centered on the nodes of the basic mesh. For triangular and tetrahedral

meshes, an example is given by Voronoi-Delaunay mesh pairs. Many other pos-

sibilities exist, including prismatic meshes in three dimensions and combinations
of these meshes.

The basic idea of the discretization is to define field components along the edges

of one of the meshes, and, therefore, normal to the faces of the other. In two

dimensions, this single component is enough to permit the definition of two

field operators corresponding to div and curl. With boundary conditions, these
are sufficient to define the discrete field. Associated with the n_des qf the two

meshes are the two discrete potentials which generate the null spaces of the
discrete div and curl. The usual relations are valid between the_e operators and

potentials.

We will address only the two dimensional problem in this paper. The main ideas

go over naturally to three dimensions but are sufficiently different to warrant a

separate treatment. It will be given in a forthcoming report. The goals here are

to provide a framework for error estimation of complementary volume schemes,

and to develop the main tools of the discrete vector field theory.

In sections 2 and 3 the class of meshes of interest is specified, and a typical
discretization is derived. Sections 4 and 5 contain the formulation and prop-

erties of the discrete vector field theory and some applications. Sections 6-8
are concerned with the main results of the error analysis. Section 7 in partic-

ular establishes a link with finite elements and applies the previous results to



errorestimatea potentialtheoryproblem.Section9 discussesspecialtopics
concerningrectangularmeshes.Section10 extends the results to more general

boundary conditions.

The discretization technique reported here has significant extensions to higher

order systems of partial differential equations, particularly to viscous fluid flow

problems. Algorithms for the Navier-Stokes equations are provided in [4] and

N.

2 Locally Equiangular Meshes. We begin by defining a class of meshes of
interest. Let _ denote a bounded polygonal region of R 2. _ may be multiply

connected. LetF0 denot_e the outer boundary, let Fi i = I, 2,.:., r denote the

inner (polygonal) boundaries if they exist and let F := U[=0Fi. Fi i = 1, 2,..., r
are considered to bound "holes" _i i = 1, 2,..., r . _ will be triangulated and

a dual tesselation will also be used. Let r denote a triangulation of _ with T

triangles denoted by rii = 1,2,...,T with N nodes xi i = 1,2,...,N1 E _2

and xj j=NI+I,NI+2,...,N EF as well as Eedgesai i= 1,2,...,E1
E f2 (interior edges) and _rj j = E1 + 1, E1 + 2,..., E E F (boundary edges).

Two triangles are called adjacent if they share a common side. Then we can

construct a dual tesselation by joining the cireumcenters of adjacent triangles.

Many duals of a given triangulation can be constructed. For example, another
one could be made by joining the centr0ids of adjacent triangles. The dual which
is based on circumcenters is rather special and will be called the normal dual

since if two triangles are adjacent, the line joining thei r circurncenters is normal

to (and bisects) their common side. The dual figures are polygons and in general

they can have self intersecting boundaries. They will be called covolumes. The
c0v0iume _sociated with an interior node is the polygonal figure obtained by

joining (!n .oider) the circumcenter s of the adjaflent triangles which share it.

We will £Ssociate:a(]Joundary) covolume with=each _boundary node as well. The

procedure......... is iiiustrated in Figure i, where the covdume for the boundary node

A is the interior of the polygon PATSRQ.

in Figure Y_,R, an_ S are the circumceiaters oY_eir tr[afigles, and P and T

are the midpoints (and circumcenters) of their edges which are on F .

The normai dual, consisting of T no(tes, =E edgesand N covolumes is denoted
by r _. Sometimes, we will use the "co" prefix to denote various elements of the

normal dual, for example in referring to coedges, comesh and so on.

There is additional complexity associated with self intersecting covolumes which

we wish to avoid. To do so, we require that r is "locally equiangular" [8]:

Definition. A triangulation is locally equiangular iff for every pair of adjacent

triangles which form a convex quadrilateral, the sum of the angles opposite the
Common-sl-de is at most i80 deg. :

=_=_
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Elementary geometry shows that if r is locally equiangular then (1) each interior

covolume is convex and (2) distinct covolumes have empty intersection and each
point of fl is either in a covolume or on the common boundary of two covolumes.

Then r I has inner and outer coboundaries F' consisting of those coedges which

intersect edges of r with just one node on F. These will be denoted by F_, and

F_ i = 1, 2,..., r when the latter exist. The section QRS in Figure 1 is part of

U. Note that any part of F _ might penetrate the corresponding part of F . This

will happen if there are obtuse angles opposite an edge of F, even if r is locally

equiangular.

We will obtain the results assuming that r > 0. The modifications for r = 0 are
mostly self evident.

The two tesselations v and r' are close to being a Delaunay-Voronoi pair. How-

ever, although a Delaunay triangulation is always locally equiangular, the con-

verse is false, at least when the classical definition of the Voronoi diagram is
used. The problem occurs at boundaries. Recall that a standard Delaunay tri-

angulation is defined by joining adjacent vertices if their Voronoi figures share
a common edge. Then it follows that the Delaunay triangulation is a trian-

gulation of the convex hull of the vertices. Since fl is not convex in general,

constructing the Delaunay triangulation of the vertices of r does not necessarily

give a triangulation of _ . For the purposes of this article these distinctions are
unimportant. Local equiangularity is the only property we need since all the

properties required can be derived from it.

Some of the results below must be modified for certain kinds of trivial triangula-

tions, in particular those with no interior triangles. We will always assume that

the triangulations are sufficiently fine for the purposes at hand. No significant

loss of generality is incurred by this assumption.

We will make frequent use of the following special case of Euler's formula:

Lemma 2.1. £et r denote a plane triangulation with N vertices, T triangles,



E edges,andr holes.Then

N+T=E+I-r.

Proof. If r = 0 the lemma is easily proved by deleting triangles from 7- while

maintaining a count of N, T and E. If r > 0 we can imagine the holes trian-

gulated consistently with r . This gives a triangulation say 7: without holes.

Combining the already established result for _ and for the triangulations of the

holes, the result follows by subtraction. []

7:: :
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3 Div-Curl Systems. One div-curl system of interest is

div u = p in fl

curl u = w in fl

u.n=f onr

u'tds=Ti i = 1,2,...,r

(1)

(2)

(3)

(4)

where ff := (u, v), curl u := vx - uy, t denotes the positively oriented unit
tangent, n the outward unit normal, and it is assumed that

r_ pdx dy = Jfr f ds. (5)

Also assumed is that p E L2(f2), _v E L2(f2) and f E H1/2(F) and that the

system has a unique solution u E HX(f2). See [6],[9] for information on this

point. We will explain the basic ideas of the discretization in terms of-(1):(4).

Section 10 extends the results to other boundary conditions.

Referring to Figure 2, we approximate (1) by

r

Ulhl "4-u2h2 + u3h3 = Japdzdy. (6)

Here and below, the uj denote approximations to u .nj, nj den0te unit normals

directed outwards and hj > 0 denote the ordinary side lengths of 7". There will

be a simiiar equation for each one of the T triangles in r. In matrix form, with

u denoting the vector of components uj, these flux equations can b e written as

Fu =/5 (7)

where u E R E and fi E R T. Analogous to (6) discrete fluxes from the holes are

also defined and we denote them by

F(u;rj) j = i,2,...,r.

!

= = 7 |
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Figure 2:

For any u E R E, it is also convenient to introduce the r x E matrix _- and

denote the hole fluxes by Uu.

To approximate (2) we integrate it over an interior covolume r[E r r as illus-

trated in Figure 3. The arrows on the covolume edges denote the directions of

*k _

Figure 3:

the unit normals to the associated triangle edges. Approximation of the integral

_o u.tds (=f curl udxdy)

where Ov[ denotes the positively oriented boundary and t the unit tangent gives

= [ (s)
k JT

where the sum is over the coedges of 07-_ and h_ _> 0 denotes the length of a
coedge. Assembling these circulation equations gives the matrix equation

Cou = _ (9)



whereu E R E and _ E R N'. The zero subscript is intended to suggest that

circulations in (9) are computed for interior nodes only. Discrete circulations

around the hole coboundaries are defined similarly to (8) and denoted by

C(u;V_) j = 1,2,...,r.

These circulations will be represented as Cu :where u E R _ and C is r × E. The

boundary condition (3) is discretized by defining boundary edge values for u by

¼1u_= fds k=EI+I,...,E. (10)
k

Note that there are N - N1 of these equations.

The prescribed circulations (4) are approximated as

C(u" ' = [,Fi) 7i + wdxdy j : 1,2,...,r (11)
J8 J

--: gj j "- 1,2,...,r

where sj denotes the strip lying between F1 and F_. We will assume that F_ does
not penetrate Fj to avoid extending w outside f2 . This will hold iff opposite

every triangle edge on Fj j = 1,2,..., r is an acute angle. (No restriction is
necessary for a simply connected domain). There is, of course, no assurance that

a locally equiangular or even a Delaunay triangulation has no obtuse angles.

Equations (7),(9),(10) and (11) are a linear system of T+ Yl + (N - N1) + r =
T + N + r equations in E unknowns. By Euler's formula there is one more

equation than unknowns, so we expect a single constraint on the data. This will
turn out to be

tier o'jEF

which holds by (5). We will prove in section 5 that these discrete equations

indeed have a unique solution.

4 Mesh Matrices. In this section some basic properties of dual mesh systems
are derived. These will lead in the next section to a more detailed formulation

of the ecluations in section 3. Similar results are valid for more general mesh

systems than plane triangulations but will not be needed below.

Let r denote an arbitrary triangulation of f2 with T triangles, E edges including
El interior edges and N nodes of which N1 are interior nodes. Label the iiaterior

nodes 1, 2,..., N1, the interior edges 1, 2,..., E1 and assign the positive direc-

tion along each edge ctk k = 1,2,..., E to be from lower to higher node number.

Let r _ denote a dual mesh, with T nodes E edges and N covolumes. The dual

can be quite general, subject to having exactly one node in each triangle. The

6
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dual edges obtained by joining adjacent dual nodes are in a biunique correspo-

nence with the edges of r. For each boundary triangle, we join the dual node

to a point on the triangle's boundary. The dual edge corresponding to _k is

denoted by _r_. For orienting the edges of r' we use the convention that (_, ak)
are oriented like a Cartesian coordinate system in the plane. This convention

applies to both interior and boundary edges.

Denote by D the E x N edge-node incidence matrix of r, where

+1 if ¢i is directed into node j
Dij := -1 if ai is directed out of node j

0 cri does not meet node j.

D is easily seen to have rank N- 1. Define Do to be the E1 x Nx matrix

obtained by deleting rows and columns of D corresponding to boundary edges
and boundary nodes respectively. Do has rank N1. If r > 0 we also define an

E1 x r matrix 79 as follows.

+1 if _i is directed into F,
79i, := -1 if _ri is directed out of I',

0 al does not meet Fs.

In this, _ri denotes interior edges, and s - 1,2,... ,r. 79 has rank r.

For the dual r _ we define the E x T incidence matrix B as follows:

Bq :=
+1
--1

0

if a[ is directed out of r1

if cri is directed into rj
_i does not meet rj.

B has rank T. B0 denotes B with rows corresponding to boundary edges deleted.
B0 is of order E1 x T. If r > 0 we define an E x r matrix B by

' is directed out of fls

+ 1 if ai
' is directed into f2,Bi_ := -1 if a i

0 ¢ri_does not meet Fs

B has rank r.

An important result is the following:

Theorem 4.1. Let v E R El. Then 3¢ E R T such that v = B0¢ iff Dtov = 0
and 79tv = O.

Proof. Since rank (B0) = T- 1, we have

dim N(B_) = E1 -T+ 1

Nl+r



using lemma 2.1. Here and below, N(.) and R(.) denote the null space and range
of their arguments. Next, it can be verified directly that B_Do¢ = 0V¢ E R N1,

and B_:D{ = 0_/{ E R r, so that R(Do) C N(B_) and n(7)) C N(B_). Direct

verification also shows that R(Do) MR(:D) = O. Since dim R(Do) + dim R(_D) =

N1 + r it follows that N(B_) = R(Do) O R(79). Solvability of the equation

B0¢ - v

holds iff

(v, z) = 0 V z E Y(Sto),

( , ) denoting the standard Euclidean inner product. By the above, this is
equivalent to

(v, D0¢) = 0 V¢•R N1

= 0 v •R r,

and these in turn are equivalent to the theorem. []

Corresponding to theorem 4.1 is:

Theorem 4.2. Let v • R E. Then 3 ¢ • R N such that v = De iff Btv = 0 and
Btv = O.

Proof. Similar to theorem 4.1. []

5 Discrete vector fields. In this section we will express the flux and circu-

lation operators in terms of the mesh properties of section 4 and develop some

analogs of vector field theorems. For the remainder of the paper we will be

using the normal dual exclusively. In any normal dual, the distance between

two circumcenters will be zero if they coincide. Although this situation is "non-

generic", it does occur in some situations (section 9). Other than this, it is

assumed throughout that the circumcenters are all distinct. If, in fact, there

are coincident circumcenters, the results obtained remain true, but minor varia-

tions in some proofs may be required. A second assumption, made throughout,
is that the coboundary F' does not penetrate P. This was already mentioned in

section 3 following (11).

In R E introduce the inner product [., .] defined by

[u, v] := (u, HH%) = (u, H'Hv) (13)

and denote the associated norm by

IIu ll.,=

In (13) H := diag(h_) andH' := diag(h_:). Both H and H' are invertible and

we let W := HHC In Figure 4, ABC and ACD are adjacent triangles from r,



A

C

Figure 4:

and P and Q are their circumcenters. Let ]AC 1:= hk and [ PQ I:= h_. The

area of the kite shaped figure APCQ is h_h'k/2. The corresponding areas at

boundaries are hjh_/4. It follows that []. ]]w is twice a discrete L2(fl) norm.

This interpretation holds for any locally equiangular triangulation.

Denote R E equipped with [., .] by U - U(ft). Then we can refer to "grid

functions" u E U(_) and regard them as having boundary values u[r and

interior values ula. Define

u0 := {_ _ u; _lr = 0}.

The flux and circulation operators of section 3 can be expressed as

F = BtH

Co _ $ IDoHo

C = g)_H_

jc = Bt H

where H_ denotes the restriction of H _ to interior edges.. Verification of these

is by direct calculation. Note that orientations are automatically taken into

account in this formulation. Difference operators are defined as follows:

S¢ := (H')-ZB¢ VCE R w

S0¢ := (Y_)-ZB0¢ vCE R T

T¢ := H-Z D¢ V¢ E R N.

We will the notation H0 to denote the restriction of H to interior edges, and

Wo := HoH_ = H_Ho. The theorems of section 4 translate into theorems about
the existence of potentials for mesh functions u with Cou = 0 and Cu = 0

(velocity/scaiar_potenfiai) and ru = 0 and 5ru = 0 (stream function/vector

potential).

Theorem 5.1. If Cou = 0 and Cu = 0 then there exists ¢ E R T such that



u = S0¢. Conversely, if u := S0¢ then Cou = 0 and Cu = O.

Proof. Use theorem 4.1 to prove the first part and direct substitution for the

converse. []

For the stream function, the analogous result is:

Theorem 5.2. If Fu = 0 and .T'u = 0 then there exists ¢ E R N such lhai

u = T¢. Conversely, if u := T¢ then Fu = O and._u = O.

Proof. For the first part use theorem 4.2. The converse is easily proved by
direct substitution. []

Note that the converses in these theorems furnish analogs to the vector identities

"curl grad ¢ = 0" and "div curl u = 0".

Another Useful result is:

Lemma 5.1. For all u E U, ¢ E R T and ¢ E R N we have

(1) [_, s¢] = (ru, ¢)
i2) 3¢] = (cu, ¢)

Proof. (1). By definition of S

[u, S¢] = (u, HH'(H')-IB¢)

= (BtHu, ¢) = (Fu, ¢).

The proof of (2) is similar.D

These are analogs of integration formulas. For example, the first is analogous
to

/nu. vCdxdy=-fCdivudxdy (¢ It= 0).

Another useful result following from above is an analog of the Helmholtz de-

composition of vector fields. In general, this decomposition is for the subspace

of U0 C .U0 whose definition-is:

Jo := {_ _ Uo;Cu = 0_d_u = 0}

Actually, since u E U0 _ Yu = 0, thiS_requirement: in the definition is redun-
dant. It is included to make explicit a symmetry in the hypoiheses. Also, before

computing du we must restrict u to interior edges. This point will arise several
times below and also in connection with Co. We will still denote the restriction

by u, and without explicit mention each time. If r = 0, then U0 = U0 and the

10
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decomposition is for U0 itself. We also define the following subspaces of Uo:

z0 = {_&;F_=0}
Wo = {ue do; Co_,=o}.

Now we have:

Theorem 5.3. U0 has the decomposition

6o = Zo_ Wo,

which is orlhogonal relative to [., .].

Proof. First, note that if w E W0, then by theorem 5.1 and part (1) of lemma
5.1 Vz E 00,

[z, w] = [z, S0¢] = [z, S¢] = (rz, ¢) V¢ E R T.

Hence, if z is orthogonalto W0, then Fz = 0 which implies z E Z0. On the
other hand, if some z E U0 satisfies Fz = 0 and also Coz = 0 then we have for

some ¢' e R T

[,, d = [,, s¢']
= (Fz, ¢')

= 0

so that z = 0. This proves the result. []

As an application of theorem 5.4 we will prove that the discrete system of section

3 has a unique solution. These equations are

Fu-- BtHu = /5 (14)

cou = D'oH'ou = co 05)
Cu--Z)H_u = ._ (16)

2"u = .f. (17)

Here, u E R E , fi, ffJ, land 9 are as before and the E x (N- N1) matrixZ

denotes the identity restricted to the boundary edge values.

Theorem 5.4. Equations (1_)-(17) have a unique solution u E U.

Proof. Consider the homogeneous problem Fu = 0 Cou = 0 Cu = 0 Zu = O.

In this case, u E W0 n Z0 and by theorem 5.3 it follows that u = 0, giving

uniqueness. Consequently, the matrix [F _ C_ Z _ Ct] which is of order (E+ 1) x E
has rank E. The augmented matrix

t

11



oforder(E + 1)x (E + 1)hasrankat mostE.Thisfollowsbysubtractionof
thethird blockrowfromthesumof thefirst blockof rowsfollowedbyuseof
thecompatibilitycondition(3.12).Hence,existencefollows.O.
A methodfor solving(14)-(17)by reducing them to potential equations can

also be found using the results above including theorem 5.3. We can suppose
without loss of generality that ] = 0, simply by substituting the known values

of u into (14) and (15). These values do not appear in (16). We can also assume
= 0 since it is trivial to find a solution of (16) and then modify u accordingly.

Hence, it is only necessary to consider (14)-(17) with ] = 0 and 0 = 0. That
means u E br0. Now seek u as a sum u(0 + uO), where both of these are in U0
and

Fu (0 = p (18)

Cou (z) = 0

and

Fu (') = 0

Cou (') = _.

Consider the first set of equations. By theorem 5.1 we can write u (t) = S0¢ and

(18) then becomes
Fs0¢ = L

Taking account of the boundary conditions, this can be factored into

t 1/2 1l_[sowo ][wd s0]¢=:.

The coefficient matrix is positive sernidefinite since B0 has rank T- 1. Clearly,

this reduction parallels a procedure for the continuous problem. The second

set of equations can be solved by a-similar approach. The details are given

(for a different context) in section 7. These procedures reduce the equations

(14)-(17) to the solution of positive semidefinite equations. Various iterative

procedures for the solution of (14)-(17) turn out to be disguised iterations for
these equations.

6 Error. analysis. In this section we will estimate the error in approximating

the solution u of the div-curl system (1)-(4) by the solution u of the covolume

approximation (14)-(17). : : :

To begin, we need the following result:

Lemma 6.1. Assume that v E Wo and that u E Uo and Fu = O. Then

[_,,v] = 0

Proof. In this lemma we do not require that u E U0. By theorem 4.1,and using

12
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ulr = 0 we have [u, v] = [u, S0¢] = [u, S¢] = (Fu, ¢) = 0 using lemma 5.1(1).
[]

Next, we introduce the following "mesh functions" u (i) E U i = 1,2 computed

from the exact solution u of the div-curl system as follows:

:= u.nds k = 1,2, ,E (19)
u_l) _'k _ '"

where _r_ is traversed positively, and n points to the right of _rk, and

u_2) :'- )_-f,u.nds k-1,2,...,E1
"_Ja k

u(_2) := u(_1) k = EO) + 1,..., E

where a_ is traversed positively, and n points along a_.

Now denoting e(i) := u - u(i), i = 1,2 we have

Fe (x) = O e(1) E Uo

Co e(2) = O e(_) e Uo

Then by lemma 6.1
[e(1), e(2)] = 0

and consequently, defining _2 := (u (1) + u(2))/2, it follows that

_(2))]

_ 1[((1) _ e(2), e(1) _

*1

£(2)]

= 4[u0) - u(_), uO) - u(2)].

The right side is independent of u, while depending only on u so this gives a
preliminary evMuation of the error. We can estimate the left side in terms of

u (1), for example, by means of

IIu- _ IIw =

>

so that the estimate becomes

II u - u(') - (d2)- ,.,o))/2 IIw
1

I1,, - '-,(')IIw -_ II '-'e_)- uO)IIw

11'-'- uu) IIw < II u(_) - u(') IIw. (20)

Evaluation of the right side of this proceeds as follows: referring to Figure 5 let

K denote a kite shaped domain with perpendicular diagonals s and s I.

13
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Figure 5:

We shall assume the diagonals are aligned with a Cartesian coordinate system
intersecting at the origin O. Let the diagonal s on the z-axis extend from z - -L

to z = L and let the diagonal s _on the y-axis extend from y -- -M1 to y = M2.

Define linear functionals p(1) i = 1, 2 on Hi(K) by

1
f_ v2(x, O)dzU(_)(v) := YE__L

1 f_vr_ Vl (0, y) dy
P(2)(v) := M1 + M2 M1

where v := (vl, v2) e Hi(K). By the trace theorem, p(i)(.) i = 1,2 are

bounded on Hi(K) and so is #(1)(.) _ p(2)(.). Also, if v is constant in K, then

(/ill) _/_(2))(v ) = 0. It follows that there exists a constant C(K) such that

I(_(1) - _,(_))(v) l_: c(K) Iv Ii,s"

Where [. h,K denotes the seminorm.

A standard scale change argument shows that C(K) depends on the ratio

max (M, _-- )

where M :=l M1 + Ms I. In terms of mesh geometry, for the kite associated
with _rk this becomes

max \h"_'_ hk/'

Substitution into the right side of the error estimate now gives

II_(_)- _(_)lJ_ = _ I(__) - _(_))(_)I_lh_h_I

_< _Clul_,_max(h_, (h_)=)
k

-- Cmax( h2, h'2) l_ I_,n

14
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where h := maxk hk and h' := mack h_. This proves:

Theorem 6.1. Assume that u E Hi(f2). Then with u denoting the approximate

solution and u O) computed from (19), we have the estimate

IIu - uo)IIw < Cmac(h, h') l u Ii,a.

Note that there is implicit dependence on the angles of the triangulation through

the appearance of the dual mesh parameter h'.

This estimate can be improved for certain regular meshes. The key observa-

tion is that the functional /_(1)(.) _ #(2)(.) vanishes on linear functions in K

if the vertical diagonal in Figure 5 is also bisected. This will occur in a gen-

eral triangulation iff all the triangles have the same circumradius. A complete

characterization of such triangulations is not known. It certainly includes the

standard uniform triangulation of the unit square, and the more symmetric
triangulation in which each mesh square of the uniform rectangular mesh is

subdivided by its diagonals. It also includes triangulations made of equilateral

triangles. (The first two of these examples are brought within the covolume

framework in section 10.) To exploit the mesh regularity, we assume now that

v E H2(K). Then it follows that

[ (#(1) _ #(2))(v ) l_< C(K) [ v 12,K

and the constant depends on

mac( LM3.3 ' M 3L ,ML).

Proceeding as above, we obtain for the regular meshes the estimate

IIu - u(1)Ilw < Cmax( h2' (h') 2) lu ka.

From the finite difference viewpoint, this means that the covolume scheme is

second order accurate. The analysis strongly suggests that rapid changes in the

circumradii of adjacent triangles should be avoided in practice. Similarly, we
expect that meshes which vary smoothly in this sense will yield better accuracy.

It would be possible to estimate the deviation from second order accuracy in

terms of the change in adjacent circumradii, but we omit this.

7 Covolume solution of Poisson_s equation. An interesting application

of the stream function can be given. Consider the equation

-/Xt_ = w qtE g2(f_)NH_(f_) (21)

q'lr = O. (22)

15



Integrationoveracovolumer_ gives

_i -_n dS = ; _ dx dy

09
and using the approximation T¢ for 7_, we get after approximation of the line

integral
-CoTe = ff_.

In more familiar notation, referring to Figure 6, a typical component of this

equation is

, E = (23)

Boundary conditions are used in the obvious way. We assume a locally equian-

h

Figure 6:

gular triangulation. On rectangular meshes, and to a lesser extent on triangular

ones, this approximation is well known.

Assembling the equations similar to (23), we obtain a linear system

K¢=_

where K is of order N1 x N1. K has the unexpected property of being the

same as the piecewise linear finite element matrix for (21)-(22) on r. That is,

if Ai i = 1, 2,..., N1 denote the standard piecewise linear basis functions for r,
then

=/(VAi)(V)_j)dxdy i,j = 1,2,... ,N1.Kij

A proof may be found in [1]. Another proof could be based on the potentially
useful factoring of K which follows by letting G := HolDo. In terms of this we
have

K = GtWoG.

i6



Thisshowsimmediately,for example,that K is positivedefinitesinceD0 has

rank N1.

A difference from the finite element formulation is apparent in the formation of
the data vector _3. The components of this vector are formed by integration of w

against the characteristic functions of the covolumes. This is in contrast to the

integration against the Ai called for in exact finite element theory. It is possible
that an error estimate for the covolume scheme could be derived from the finite

element estimate by the usual techniques for handling quadrature formulas. On

the other hand, it seems quite natural to obtain an estimate within the covolume
framework. This can be done as follows. Define u := T_I'. Then we have

Fu = 0

Cou =

ulr = 0

Cu = 7i i = 1, 2, ..., r

where 7i is computed as indicated. The exact solution of the analogous div-curl

system is u = (ul,u2) where ul = Ou_ and u2 = -0,_. Based on u define u (i)
by (19). Since u(t) Iv= 0 and Fu(1) = 0 by theorem 4.2 there exists ¢(1) 6 R N
such that u (I) = T¢ (1). Next, we have

Lemma 7.1.

¢(1) li = _(mi) i= 1,2,...,N.

J

Proof. By definition, integrating positively along ak, we have for k = 1,2, ..., E

1I:: u • n ds

1 j( (cgy_, -cgx_ ) ndsh4 k

l f_ 09= h'--i
= (Tg)Ik

so that (T_) 14= (T¢0)) 14. Recalling that rank(T)=rank(D)=N- 1, it follows

that _(z4) and ¢(z4) differ by a constant which can take to be zero. 1:3

Define

_I,) :=/n(V_)(v_)dxdy V¢,_ 6 H01(f2).a((I ) ,

The main result is:

17



Theorem 7.1. Let ¢ denote the piecewise linear inlerpolant of ¢ the covolume

approximation to k_. Then

IIG- ¢ I11,____Cmax(h, h') 11¢ l12,n•

Proof. By theorem 6.1, we can write

IIn-u <x)tlw =
<

and so

11T¢ - T¢ (1) IIw

Cmax(h, h')II ¢ I1_,_

(CoT(¢ - ¢(')), ¢ - ¢(1)) <_ C[max(h, hi)II _ I1_,-]_.

By the lemma, denoting by _ the piecewise linear interpolant of • on r,

a(¢ - if', ¢ - _) < C[max(h, h') I1 _ I1_,_]_

and

a(¢ - kg, ¢ - ¢) < C[max(h, h') II_ 112,_]_ _-a(_ - ¢, _ - _)

Using approximation theory it follows that

a(¢ - k_, ¢ - _) < C[max(h, h')II ¢ ll2,a]=

and the result follows from Poincare-Friedrichs' inequality. []

Thus, the covolume scheme and the finite element scheme are of the same order

in the Hi(f2) norm.

8 Tangential Components. The discretizations of section 3 produce approx-

imations to the velocity components normal to the triangle edges. Tangential

field components are known in the directions of the comesh edges. This is a
basic characteristic of the covolume method. But in many applications it is a

vector field that is required and not merely sets of components. An example =

occurs in connection with approximating convection terms in viscous flow prob-

lems [7]. In this section we give an algorithm for computing a set of tangential

components from a given set of normal components. In this way, a (discrete)

vector field is obtained. The covolume scheme itself is not changed. Instead, the

tangential components are found from the covolume solution in a "postprocess-

ing" operation. Analysis of the error of the tangential approximations is also
presented in this section. -_

We begin by noting that the three normal field components for a given triangle -_
are too many to determine a constant field in the triangle. The following result

=
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givesthecompatibilityconditionforthethreecomponentstouniquelydetermine
aconstantfield.

Lemma 8.1. Given three normal components vi, i = 1,2,3 on triangle sides
with lengths hi and corresponding unit outward normals ni where i = 1,2,3
there exists a constant vector u such that

u. ni = vi i = 1,2, 3 (24)

iff the flux

vlhl + v2h2 + vah3 = O.

u is unique.

Proof. Equation (24) is a system of three equations for two components of u.

For nondegenerate triangles r the coefficient matrix A := (ni)j clearly has rank

2, so it follows that dimN(A t) = 1. Now the equation

Aw=O

certainly has the solution w = (hi, h2, h3), since

O = J_r V(1) dxdY = for nds = nlhl + n2h2 + n3h3.

Hence, (24) will be solvable uniquely iff

Vlhl + v_h2 + v3h3 = 0

which is what we wanted to show. D

From this lemma it follows that if Fu = 0, then we can construct a piecewise

constant vector field u on r whose (continuous) normal components are given
by u. An easy way to compute a tangential component along an edge of the

triangulation is to average the tangential components of the constant fields in

the triangles sharing the edge. The remaining problem is then to construct
the piecewise constant field when the flux is nonzero and lemma 8.1 does not

apply. There is no unique way to do this. For example, we can take any pair

of normal components and designate them as the respective components of the

sought vector in a triangle. This procedure will be used. Denoting the kite areas

associated with the triangle by K1 > I(_ > I(3, we choose the corresponding

components Ul and u2 associated with the largest and second largest kite areas
to define the vector.

To compute a constant interpolating field u_, let ff := (ul, u2) and define

cos O := nl • n2. Representing ul := c_lnl + azn2 gives the equations

(lcosO c°sO )( al)1 c_2 = ( Ul)u2 (25)
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whichuniquelydetermineax, a2. It can be checked from this representation
that

2
uj .u_ < _ ". " (_6)

- sin 2 0 u u,

a result we will use below.

Interpolation of the u1's across the common edge of their triangles is also subject

to a certain amount of arbitrariness. One possibility is to use the vector from

one of the triangles and ignore the other. Another is to weight the vectors

equally, while a third is to use full linear interpolation. In this last case, it is

necessary to assign a localization of the vectors. The most natural choice is
tO attach each u_ to the circumcenter Of its triangle. To justify this, we can

observe that the two directions from which ul is made indeed pass through the

circumcenter. The line joining the circumcenters is divided in a certain ratio by

the common edge of the triangles which determines the interpolation weights in
the usual way. Note that if one of the triangles is obtuse, this becomes a linear

extrapolation. Each of these methods corresponds to a weighting of the form

Alum1) + X_u_ 2) in which X1 + X;_= 1. Some situations suggest other weightings

to use. At boundaries in particular, a (1, 0) weighting is required. In other cases
the weights can vary from edge to edge.

Next, we will estimate the error of this tangential approximation scheme. The
interpolated vector for the k th edge has the form

w(k):= 1 "t +"2 _z

where the Superscripts (kl), (k_) denote the two triangles on each side of the

k th edge. The tangential component of this is just t(k) • w(k). For u E U, let

Tu E U denote the mapping to the tangential components generated in this

way.

parameter which will appear in the estimate is the ratio _K_J)/K_ _) =: _(k),A

where K(j) are the kite areas for rj. We will define 6 := max¢(6(J)). This

quantity will be estimated later. Also we wiU define O := min,,_(]sin0('_)])

where 0 (m) corresponds to the angle in (25) above and the minimum is over the
triangles. In addition to these we will denote by A the maximum absolute inter-

polation coefficient: :_ := maxk(JA_k)], JA_t)]). The next result will be required
below:

Lemma 8.1. The following bound on 7- holds:

46)_

l[T_llw _< %--I[,,llw v_, _ u.

,It

=

i

Proof. Let K (k) denote the kite area on the edge cr_. Then since

2O



wehave,using(26)

I(Tu)kl2K(k) = _lt(k).w(k)12K(k)
k k

4A2 E(lU--(_D[2 + lu-'(_2)I2)K (k).-< -gr
k

Also

< "q21(u(ka)_2K(kO'{-_2 J "_2 J
__ w L\ 1 ] 1

with a similar bound for lu-<k*)12K (k). Noting that each product appears at most

four times and substituting these into the previous inequality gives the result.
[]

Next, let u E Hi(f2), and define u O) by (19). In addition, let v (1) be defined

by

v_1) := t .uds k = 1,2,..., E (27)
k

where crk is traversed positively and t denotes the unit tangent along crk. Now
we have:

Lemma 8.2. The estimate

CA
Ilv(1) - 7-d')llw < -6- max(h, h')llulll,a

holds.

Proof. Let _k denote an edge of rj E r. The functional

_(u) := (v_')- t_. @)

is linear, bounded on Iti(rj) by the trace theorem, vanishes on constant u, and
so has the estimate

I"_(u)l < C(_'.dl'-'l,,,'j.

By the usual mapping to a reference element [3] it follows that

C
c(,_) _<g.

Following the notation of the previous proof, using A1 + A2 = 1 we have

(,/') -'r,,('))_, < _(I,-'_,,(,')1+ I,-',_(")1
CA

< -6-(1u11,,,, + lull.,,,).
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andconsequentlywith amodifiedconstantC,

U 2:_-'_,[(v(1) - Tu(1))kl 2I(k < (_'_'_'A)2rn_ax(K(k)) _l ]I,Tj
k j

which is equivalent to the required result. []

Combining lemmas 8.1 and 8.2 now gives:

Lemma 8.3. Let u E U denote the covolume approximation to u E Hl(fi)

estimated in theorem 6.1 and let Tu denole the approximate tangential compo-
nents. Then the estimate

CA6
11all) - Tu[Iw < ---_-max (h, h')llulll,.

holds where v (1) is defined by (27).

Proof. It is only necessary to observe that

1173(1) -- _TulIw __ II 73(1) -- TuCl)llw+ IlT(u - _(_))llw

and to use lemma 8.2 on the first term and lemma 8.1 and theorem 6.1 on the
second. []

We may now construct the discrete vector field u¢o := (u, Tu) E U x U and

regard it as a covolume approximation to u the solution of the div-curl system

(1)-(4). The error estimate for II(u - u (1), Tu - v(1))ll_v := Ilu - u(1)ll_v + I]Tu-

v(I)ll_v follows immediately. Defining u(l) := (u (1), v(1) we summarize with

Theorem 8.1.The covolume approximation u (1) satisfies

CAb

lluc. - u(1)llw _< --_-max(h, h')tlulll,_,

where 6) denotes minm Isin am], a,, denoting the angles of the triangles in r, A
denotes the largest absolute interpolation coefficient, and 62 denotes the largest

kite ratio for triangles in the triangulation.

Proof. This is simply a question of applying the definition of the norm on the
left and theorem 6.1 and lemma 8.3. _.

We can make this bound more explicit for acute angled triangulations. In that

case, we have A <_ 1. For any acute angled triangle rj E r, let A_ j) >_ A (j) >

A (j) >_ 0 denote the areas of the three triangles formed when the circumcenter

is joined to the vertices. Thus A_J)/Ir_I are the barycentric coordinates of the

circumcenter.Obviously,A__ > I_I/3. Acalculationshowsthat A?) _<2A__).
We will also use the area ratio of the triangulation defined by

rr := max (ri, r) adjacent).

Z

Z

m

=
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Notethatthisratiois formedfor adjacent triangles only.

Denote the kite areas of rj by If_J) >_ If_J) > K (j) > 0 (since h_ > 0). Below,

we will use the fact that for acute triangles we always have A_ j) < K_ j). This

follows since the maximal property of K_ j) ensures that it is always at least as

large as the A! j) which are not part of K_ j). But at least one of these two A (j)

must be at least equal to A_ j), so the above property does hold. It follows that

= hkh' /2
<_ AI(rj) + rTIrjl

<_ 2A_(rj) + rT3A_(rj)

<: 2g2(vj) + r_3.2K2(rj)

_< 8rr K2(rj).

This shows that we can take 6 = v/gT_. It would of course be possible to bound

r_ in terms of mesh lengths and @ but we prefer not to do this. Instead, making

use of this value for 6 in theorem 8.1 now gives the estimate

Cv_-r max(h, h')[]u[[1,n.

This is valid for acute triangulations,

Estimating _ and 6 is more difficult when there are obtuse triangles. The

problem is associated with h_k/hk values which approach zero. This will not be
discussed further here, but section 9 has some related information.

9 Comments on rectangular meshes. The earlier results have been ob-

tained under the assumption that all h_ > 0. This is equivalent to assuming

that circumcenters of adjacent triangles are distinct. Now we will briefly summa-

rize the necessary changes for the contrary case. The previous results continue

to hold with some slight changes.

Coincident circumcenters will occur if the triangulation contains a cyclic quadri-

lateral Q. The distance between the circumcenters of the two triangles making

Q is h _ := 0. There is no change in the definition of the covolumes, and the

discrete circulation equations (9) continue to approximate the continuous ones
(2). Note that the normal component for the diagonal does not appear in the

circulation equations. The flux equations are also unchanged by the existence

of Q, but the diagonal component does appear in them. A problem shows up
in the analysis, since the kite area for the diagonal is zero and consequently

[]" IIw is now merely a seminorm. This inconvenience is easily removed by a
slight modification of the equations: we simply add the two flux equations asso-

ciated with Q. The diagonal component does not appear in the resulting sum.
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In thisway,thenumberofequationsis reduced by one and so is the number of

equations.

More directly, we can modify the triangulation by deleting the diagonals of all
cyclic quadrilaterals. Circumcenters are well defined for each of the resulting

mesh figures. Flux and circulation equations are written in the obvious way.

Euler's formula, lemma 2.1 is still true and there will be a single consistency

condition analogous to (5). The effect of this modification is to remove the dual
edges which have h' = 0. With these gone, we can prove the key theorem 5.1.

which requires the existence of (h') -I. Still defining the kite areas by joining

circumcenters of mesh figures to their vertices, the results in sections 6-7 follow

essentially verbatim.

These observations apply particularly to cartesian rectangular meshes. Normal

to vertical (horizontal) mesh segments we have horizontal (vertical) field compo-
nents. Flux equations are written for mesh rectangles, and circulation equations

for the dual mesh rectangles around the mesh points. The two potentials ¢ and

¢ are defined respectively at the mesh cell circumcenters and the mesh points
themselves. The mesh pair is the same as the usual staggered mesh system

found in fluid flow discretizations. Error estimation of this scheme is given at

the end of section 6, where second order accuracy is demonstrated. The scheme

itself is advocated in [2].

There are occasions when rectangular and triangular meshes can be usefully

combined. This is especially true when highly stretched meshes must be used.
In regions where Stretching is necessary, rectangular mesh cells can be used in

place of triangles. This might be helpful in calculations involving boundary and

other kinds of layers.

A situation related to the above occurs when some h_/hk is small, but positive.
Although, in a sense, this is inconsequential from the analytical viewpoint, in

finite precision environments instabilities could result. The three dimensional

case is worse in this respect, because there is more opportunity for degeneracy.

In practice, it should be satisfactory to merely set to zero those h' for which

h'k/h_: is below some threshold and proceed as indicated above. This does
introduce some extra error, but by a suitable choice of the threshold it should
be within the discretization error.

!

E

=

_t

10 Mixed boundary conditions. In this section, we will extend the earlier

results to boundary conditions which are partly normal and partly tangential.

The technique will be illustrated for the simply connected problem. If required,

multiply connected cases can be handled by direct extension of the method

already used in earlier sections.

We consider in the simply connected polygonal domain fl the system

div u = p in f_ (28)
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curlu = w in f2 (29)

u. n = f on r. (30)

u-t = g onF_ (31)

where F -- F,_ U Ft and neither part has zero measure. For illustration,we can

assume that I" is divided into two continuous parts r, and F_ each with nonzero

length. We assume that p • L_(f_ ), w • L2(ft ) and f • H1/2(r ) and that the

system has a unique solution u • Hl(f_ )

Discretization of (28)-(31) follows section 3, except that (10) is applied only

to boundary edges on Fn. Here and below, it is assumed that nodes of the

triangulation always separate Fn and Ft and that, conventionally, the separating

nodes belong to Ft. Boundary edges of r which are in F,, are labelled E1 -t-
1, ..., E2 and boundary edges in rt are labelled E2 -t- 1, ..., E. Then in place of

(10) we have

uk = _ k "f ds k = EI + I,...,E2.

To complement the boundary conditions, some boundary circulation equations
are used. The derivation of these equations will be illustrated using Figure 7.

ABC is part of F_ and the boundary covolume r_ associated with the node at

Figure 7:

B is shown. The orientation conventions are unchanged. Define

1 /A gdsVAS .--]ABI B

and

g ds,
v_c.- IBCl c

where A'B and B'C are the positive directions. The circulation equation for 0r_

is approximated by

__, u_h_ + _vABhAB + _vschBc = _ d= @ (32)
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anda similarequationis usedfor eachboundarycovolumeassociatedwith a
nodestrictly interiorto F,. It is alwaysassumed,withoutexplicitmention,
that h is sufficiently small for Ft to contain at least one strictly interior node.

This assumption is essential for what follows. If it is not satisfied, then we are

essentially in the situation of the previous sections as far as the discretization
is concerned.

The system of equations which results may be written as

ru = _ (33)

Cbu = _-_ (34)

uIr = )¢ (35)

where 9 is found from the terms involving the tangential boundary function

in equations like (32) and Cb has no explicit dependence on the lengths of the

boundary edges.

The number of nodes interior to Ft is E-E2 and the number of edges is therefore

E - E2 - 1. In all, the number of equations is

T+NI+(E-E2-1)+(E2-E1) = T+N-1

= E

by lemma 2.1. This time, unlike the earlier situation the number of equations
and unknowns are equal.

Now we will prove that the solution of the linear system is unique. For this,

we will generalize the Helmholtz type theorem 5.3 to cover the new boundary
conditions. It is necessary first to have results analogous to theorems 4.1 and
5.1.

Recalling the definition of the matrix D in section 4, let Db denote the restriction

olD to {xl; xi E DUFt}, and let Bb denote B with columns E2+ I,...,E

deleted. Thus, dim R(Bb) = E1 + E - E2 =: E'.

Theorem 10.1 Let f_ be simply connected and assume that v E R E' • Then

there exists ¢ E R T such thai v = Bb¢ iff D_v = O.

Proof. The proof of this follows closely the proof of theorem 4.1 and we shall
omit most of the details. We have to solve

Bb¢ = v.

Th at

B_Db¢ = 0

follows from the easily proved relation BtD¢= O. Also, rank (Db) = N _, where

N I denotes the number of interior nodes plus nodes on F_. In addition,

dimN(B_) -- E _ - T.

I

%

m

L
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Countinganduseoflemma2.1showsthatN _ = E _ - T so the result follows. []

Now we have that Cbu = 0 iff D_H'u = O. Define Sb :-- (H')-I Bb (denoting the

restriction of (H') -1 to R(B_) by the same symbol). It follows that Cbu = 0 iff
U=SbCfor some¢ E R T.

Next, define

U_ := {u E RE;ulr,=O}

wg := {u_Ug;Cbu=0}
z_ := {_U_;F_=0}.

Theorem 10.2 Assume that f_ is simply connecled. Then U_ has the decompo-
sition

which is orthogonal relative to [., .].

Proof. w • W_ implies [u, w] = [u, Sb¢] = [u, S¢] = (ru, ¢). Hence, [u, w] =

0 for all w • W_ implies that Fu = O. The rest of the argument is as before. []

Existence and uniqueness for the discrete system follows directly, since if u is

a solution of the homogeneous system we have u • W_ N Z_ -- 0. Existence

follows from uniqueness since the coefficient matrix is square.

It remains to estimate the error of this approximation. The method is similar

to section 7 with some small modificaions. We define u (1) just as in (19). Cor-

responding to u(2) we define a very slightly different function, still denoted by
u(2) as follows:

:= _ u.nds k= l,2,...,E1 k= E2+ I,...,E
h'_ _

u_2) := u_1) k= E (1)+1,...,E2.

The edges _k k :- E2 + 1,..., E are in Ft ; each of the coedges o-_ extends from

a_'s midpoint to the circumcenter of the triangle containing ak, exemplified by

PQ and TU in Figure 7. As before, define c(i) = u - u (i) i -- 1,2 . Then

Fe (1) = 0 e(1) • Z_

Cbe (2) = 0 e(2) • W_

and [e(1), e(2)] = 0 by theorem 10.2.

obtain, corresponding to (20)

Following the method of section 6, we

Ilu- _(_)llw _<I1_(:) - _(1)llw.
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Theright sidecanbeestimatedasbefore,exceptthat nowtherewill be a
contributionto thenormfromtheboundarysegmentsalongF:. Theearlier
estimationtechniqueworksheretoo,andis especiallysimpleif eachcoedge
associatedwithFt lieswhollyin ft. Thiswillcertainlybethecase,forexample,if
theboundarytHangiesareacuteangle_,slncethenthecoedgeswill lieinsidethe
trianglesthemselves.Thatis thesimplestcase.Wesummarizethisdiscussion
with: = : -: ::

Theorem 10.3For the equaiions (28):(31) and their discret_zation (33)-(35),
we have the estimate

[lu- uO)[[ W < Cmax(h,h')Iuh,n.

So far, we have considered the purely normal boundary condition and the mixed

boundary condition. For the purely tangential case the simplest approach seems
to be to use tangential field components in place of the normal ones used in

sections 2-6. The circulation equations are formed using the triangle boundaries

and the flux equations are formed using the covolume boundaries. It is apparent

that this method gives a natural dual to the earlier one. We will not go into the
details here, but an almost verbatim development of the theory can be carried
out. This includes most of the results of sections 2-6. The main difference is to

exchange the roles of ¢ and ¢. This duality is strongly reminiscent of complex

variable theory. In fact, a similar connection was developed in [5]. The results
given above provide useful tools for the analysis of that scheme.

References

[1] C.BSrgers, C. Peskin. A Lagrangian Method Based on the Voronoi Dia-

gram for the Incompressible Navier-Stokes Equations on a Periodic Do-

main. Proc. Intnl. Conf. on Free Lagrange Methods, ed. M. J. Fritts et al.

Lecture Notes in Physics v. 238 Springer Verlag (1985)

[2] A. Brandt, N. Dinar. Multigrid Solutions to Elliptic Flow Problems; in

Numerical Methods for Partial Differential Equations, ed. S. V. Parter,
Academic Press (1979)

[3] P. Ciarlet. The Finite Element Method for Elliptic Problems, North Holland
(1977)

[4] S. Choudhury, R. A. Nicolaides. Discretization of incompressible vorticity-

velocity equations on triangular meshes. (to appear in Intnl. Jnl. Num.
Meth. Fluid Dynamics)

!

E

lIE

I

L

28



[5]R.Duffin.PotentialTheoryonaRhombic Lattice. Jnl. Comb. Th. 5, (1968)

p258

[6] V. Girault, P-A. Raviart. Finite Element Methods for Navier-Stokes Equa-

tions, Springer-Verlag, (1986)

[7] R. A. Nicolaides. Flow Discretization by Complementary Volume Tech-

niques. AIAA Paper 89-1978. Proceedings of the 9th AIAA CFD Meeting,
Buffalo, New York, June 1989.

[8] P_. Sibson. Locally Equiangular Triangulations. Computer Jnl. 21, (1978)

p243

[9] W. Wendland. Elliptic Systems in the Plane, Pitman, (1979)

[10] S. Wong, Z. Cendes. Combined Finite Element-Modal Solution of Three

Dimensional Eddy Current Problems. IEEE Trans. on Magnetics 24, (1988)
p2685

29



N/tSA
_oace Aoe_+_s.alon

1. Report No.

NASA CR- 1819 35

ICASE Report No. 89-76
4. Title and Subtitle

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

DIRECT DISCRETIZATION OF PLANAR div-curl PROBLEMS

7. Author(s)

R. A. Nicolaides

9. Pedorming Organizat!on Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-522_
12. Spon_ring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

5. Repo_ Date

October 1989

6. Performing Organization Code

8. Performi_ Organization Repo_ No.

89-76

10. Work Unit No,

505-90-21-01

11. Contract or Grant No,

NASI-18605

13. Ty_ ofReportandPeri_ Cover_

Contractor Report

14. Sponsoring _.gency Code

15, 'Supplementary Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report

16. Abstract

SlAM Journel

A control volume method is proposed for planar div-curl systems. The

method is independent of potential and least squares formulations, and works

directly with the div-curl system. The novelty of the technique lies in its

use of a single local vector field component and two control volumes rather

than the other way round. A discrete vector field theory comes quite natur-

ally from this idea and is developed in the paper. Error estimates are proved

for the method, and other ramifications investigated.

17. Key words (Suggested by/_uthor(s)]

finite difference methods, finite

difference elements, div-curl equations

19. Security Classif. (of this rep-ort)

Unclassified

NASA FORM 16_OCT

18. Distribution Statement

64 - Numerical Analysis

Unclassified - Unlimited

_. Securi_ Cla_if. (_ this pa_) 21."No. of _s

Unclassified 31

22. Price

A03

NASA-Langley, 19$9

-=

=

_.

=


